Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Di-μ-bromido-bis({bis[2-(2-pyridyl)ethyl]amine}copper(II)) bis(perchlorate)

Ray J. Butcher,* Yilma Gultneh, Teshome B. Yisgedu and Yohannes T. Tesema

Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA

Correspondence e-mail: rbutcher99@yahoo.com

Received 19 December 2007; accepted 28 December 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.008 Å; disorder in solvent or counterion; R factor = 0.043; wR factor = 0.095; data-to-parameter ratio = 15.4.

Each Cu atom in the dinuclear centrosymmetric title complex, $[Cu_2Br_2(C_{14}H_{17}N_3)_2](ClO_4)_2$, is ligated in a distorted squarepyramidal geometry ($\tau = 0.31$) by a tridentate bis[2-(2pyridyl)ethyl]amine ligand, and by two bridging Br atoms. In addition, the dinuclear species is stabilized by two hydrogenbonded perchlorate anions.

Related literature

For related literature, see: Chakrabarty *et al.* (2004); Helis *et al.* (1977); Marsh *et al.* (1983); Udugala-Ganehenege, *et al.* (2001); Xu *et al.* (2000). For the calculation of the coordination geometry, see: Addison *et al.* (1984).

Experimental

Crystal data $[Cu_2Br_2(C_{14}H_{17}N_{3})_2](ClO_4)_2$ $M_r = 940.41$ Triclinic, $P\overline{1}$ a = 6.8002 (13) Å b = 11.413 (2) Å c = 12.668 (2) Å $\alpha = 67.212 (8)^{\circ}$ $\beta = 77.019 (13)^{\circ}$

 $\gamma = 87.033 (15)^{\circ}$ $V = 882.6 (3) Å^3$ Z = 1Mo K\alpha radiation $\mu = 3.67 \text{ mm}^{-1}$ T = 293 (2) K $0.42 \times 0.21 \times 0.18 \text{ mm}$

Data collection

Bruker P4 diffractometer Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.569, T_{\max} = 0.948$ (expected range = 0.310–0.516) 3951 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.095$ S = 1.043936 reflections 255 parameters 3936 independent reflections 2960 reflections with $I > 2\sigma I$) $R_{int} = 0.018$ 3 standard reflections every 97 reflections intensity decay: <2%

Table 1 Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N-H0A···O14A	0.91	2.34	3.205 (12)	159
$N-H0A\cdots O13B$	0.91	2.44	3.089 (18)	129
$C6A - H6AB \cdots Br^{i}$	0.97	2.70	3.588 (4)	153
$C6B - H6BC \cdot \cdot \cdot Br^{ii}$	0.97	2.89	3.706 (4)	142
$C6B - H6BB \cdot \cdot \cdot O13B^{iii}$	0.97	2.57	3.487 (18)	158
$C2A - H2AA \cdots O11A^{iv}$	0.93	2.52	3.162 (14)	126
$C7A - H7AA \cdots O12A^{v}$	0.97	2.51	3.322 (16)	141
$C7A - H7AA \cdots O13B$	0.97	2.49	3.179 (15)	128
$C3A - H3AA \cdots O13A^{vi}$	0.93	2.54	3.142 (12)	122

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x + 2, -y + 2, -z + 1; (iii) x + 1, y, z; (iv) x + 1, y - 1, z; (v) -x, -y + 2, -z + 2; (vi) x, y - 1, z.

Data collection: *XSCANS* (Bruker, 1997); cell refinement: *XSCANS*; data reduction: *XSCANS*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Bruker, 2000); software used to prepare material for publication: *SHELXTL*.

RJB acknowledges the DoD for funds to upgrade the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2238).

References

- Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Bruker (1997). XSCANS. Version 2.20. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2000). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chakrabarty, S., Poddar, R. K., Poulsen, R. D., Thompson, A. L. & Howard, J. A. K. (2004). Acta Cryst. C60, m628–m630.
- Helis, H. M., Goodman, W. H., Wilson, R. B., Morgan, J. A. & Hodgson, D. J. (1977). Inorg. Chem. 16, 2412–2416.
- Marsh, W. E., Patel, K. C., Hatfield, W. E. & Hodgson, D. J. (1983). Inorg. Chem. 22, 511–515.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Udugala-Ganehenege, M. Y., Heeg, M. J., Hryhorczuk, L. M., Wenger, L. E. & Endicott, J. F. (2001). *Inorg. Chem.* **40**, 1614–1625.
- Xu, Z., White, S., Thompson, L. K., Miller, D. O., Ohba, M., Okawa, H., Wilson, C. & Howard, J. A. K. (2000). J. Chem. Soc. Dalton Trans. pp.1751– 1757.

Acta Cryst. (2008). E64, m323 [doi:10.1107/S1600536807068663]

Di-µ-bromido-bis({bis[2-(2-pyridyl)ethyl]amine}copper(II)) bis(perchlorate)

R. J. Butcher, Y. Gultneh, T. B. Yisgedu and Y. T. Tesema

Comment

Complex (I), Fig. 1, contains two Cu(II) atoms, each within a distorted square-pyramidal geometry ($\tau = 0.31$, Addison *et al.*, 1984) where one amine-N atom, two pyridine-N atoms and one Br atom constitute the basal plane with Cu—N_{pyridine} = 2.012 (3) and 2.000 (3) Å, Cu—N_{amine} = 2.044 (3) Å and Cu—Br = 2.4542 (7) Å. The axial position is occupied by the second Br atom with Cu—Br = 2.8908 (8) Å, the longer distance being consistent with a Jahn-Teller elongation. Pairs of these square-pyramidal Cu complexes form dimers about a center of inversion, being mutually bridged by the Br atoms. In addition, the dinuclear complex is stabilized by two N—H…O hydrogen bonded ClO₄⁻ anions (Table 1) and the crystal packing is consolidated by a variety of hydrogen bonding interactions (Fig. 2 and Table 1).

Experimental

The title complex was synthesized by reacting $Cu(ClO_4)_2.6H_2O$ (0.37 g, 1 mmol), bis[2-(2-pyridyl)ethyl]amine (0.227 g, 1 mmol) and potassium bromide (0.0297 g, 0.25 mmol) in acetonitrile (15 ml) for 4 h at room temperature. X-ray quality crystals were grown by slow diffusion of diethyl ether into an acetonitrile solution of the complex.

Refinement

The perchlorate anion is disordered over two conformations with occupancy factors, from refinement, of 0.543 (17) and 0.457 (17). It was constrained to adopt a tetrahedral geometry. The H atoms were idealized with N—H = 0.91 Å and C—H = 0.93 (aromatic C—H), 0.96 (CH₃), and 0.97 (CH₂) Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$ (1.5 $U_{eq}(C)$ for the CH₃).

Figures

Fig. 1. Complex (I) showing numbering scheme and displacement ellipsoids at the 20% probabilty level.

Fig. 2. The packing arrangement viewed down the *a* axis showing the intramolecular N—H···O and intermolecular C—H···O interactions (dashed bonds).

Di-µ-bromido-bis({bis[2-(2-pyridyl)ethyl]amine}copper(II)) bis(perchlorate)

Crystal data	
[Cu ₂ Br ₂ (C ₁₄ H ₁₇ N ₃) ₂](ClO ₄) ₂	Z = 1
$M_r = 940.41$	$F_{000} = 470$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.769 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 6.8002 (13) Å	Cell parameters from 49 reflections
b = 11.413 (2) Å	$\theta = 2.1 - 12.5^{\circ}$
c = 12.668 (2) Å	$\mu = 3.68 \text{ mm}^{-1}$
$\alpha = 67.212 \ (8)^{\circ}$	T = 293 (2) K
$\beta = 77.019 \ (13)^{\circ}$	Thick needle, blue
$\gamma = 87.033 \ (15)^{\circ}$	$0.42\times0.21\times0.18~mm$
V = 882.6 (3) Å ³	

Data collection

Bruker P4 diffractometer	$R_{\rm int} = 0.018$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 27.5^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.1^{\circ}$
T = 293(2) K	$h = -8 \rightarrow 0$
ω scans	$k = -13 \rightarrow 13$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = -16 \rightarrow 16$
$T_{\min} = 0.569, T_{\max} = 0.948$	3 standard reflections
3951 measured reflections	every 97 reflections
3936 independent reflections	intensity decay: <2%
2960 reflections with $I > 2\sigma I$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

 $R[F^2 > 2\sigma(F^2)] = 0.042$ H-atom parameters constrained $wR(F^2) = 0.095$ $w = 1/[\sigma^2(F_o^2) + (0.0336P)^2 + 0.6582P]$ $wF(F^2) = 0.095$ where $P = (F_o^2 + 2F_c^2)/3$ S = 1.04 $(\Delta/\sigma)_{max} < 0.001$ 3936 reflections $\Delta \rho_{max} = 0.50$ e Å⁻³255 parameters $\Delta \rho_{min} = -0.36$ e Å⁻³50 restraintsExtinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Cu	0.60810(7)	0.98360 (4)	0.63720 (4)	0.03731 (14)	
Br	0.76316 (6)	0.97756 (4)	0.44483 (3)	0.03934 (12)	
Cl	0.19832 (18)	1.27274 (11)	0.86706 (12)	0.0588 (3)	
O11A	0.062 (3)	1.3663 (19)	0.856 (2)	0.149 (8)	0.543 (17)
O12A	0.117 (3)	1.1516 (12)	0.9388 (14)	0.094 (5)	0.543 (17)
O13A	0.372 (2)	1.2975 (11)	0.8979 (15)	0.110 (4)	0.543 (17)
O14A	0.2714 (18)	1.2648 (13)	0.7496 (8)	0.101 (4)	0.543 (17)
O11B	0.010 (2)	1.332 (2)	0.8582 (19)	0.100 (5)	0.457 (17)
O12B	0.346 (3)	1.3175 (18)	0.7719 (15)	0.155 (7)	0.457 (17)
O13B	0.155 (3)	1.1399 (11)	0.9066 (16)	0.072 (4)	0.457 (17)
O14B	0.256 (3)	1.2875 (13)	0.9664 (14)	0.110 (5)	0.457 (17)
Ν	0.4740 (5)	0.9948 (3)	0.7943 (3)	0.0424 (8)	
H0A	0.3920	1.0619	0.7755	0.051*	
N1A	0.6270 (5)	0.7958 (3)	0.7201 (3)	0.0391 (7)	
N1B	0.6733 (5)	1.1709 (3)	0.5811 (3)	0.0380 (7)	
C1A	0.8000 (7)	0.7390 (4)	0.6945 (4)	0.0495 (10)	
H1AA	0.9093	0.7891	0.6398	0.059*	
C2A	0.8210 (9)	0.6113 (5)	0.7456 (5)	0.0666 (14)	
H2AA	0.9433	0.5751	0.7279	0.080*	
C3A	0.6575 (9)	0.5370 (5)	0.8238 (5)	0.0730 (16)	
H3AA	0.6662	0.4492	0.8572	0.088*	
C4A	0.4811 (8)	0.5932 (4)	0.8524 (4)	0.0581 (12)	
H4AA	0.3702	0.5436	0.9058	0.070*	

0.4694 (6)	0.7240 (4)	0.8012 (3)	0.0412 (9)
0.2871 (6)	0.7913 (4)	0.8353 (4)	0.0487 (10)
0.1859	0.7293	0.8942	0.058*
0.2304	0.8359	0.7672	0.058*
0.3377 (8)	0.8864 (4)	0.8842 (4)	0.0609 (13)
0.2134	0.9198	0.9144	0.073*
0.4022	0.8424	0.9492	0.073*
0.6256 (7)	1.2605 (4)	0.4855 (4)	0.0488 (10)
0.5619	1.2350	0.4397	0.059*
0.6661 (8)	1.3874 (4)	0.4520 (5)	0.0609 (13)
0.6339	1.4470	0.3842	0.073*
0.7563 (8)	1.4244 (5)	0.5220 (6)	0.0681 (15)
0.7819	1.5103	0.5031	0.082*
0.8084 (7)	1.3342 (5)	0.6198 (5)	0.0623 (14)
0.8725	1.3584	0.6662	0.075*
0.7646 (6)	1.2071 (4)	0.6483 (4)	0.0435 (10)
0.8117 (7)	1.1013 (5)	0.7541 (4)	0.0544 (12)
0.8924	1.1359	0.7902	0.065*
0.8917	1.0401	0.7290	0.065*
0.6244 (7)	1.0334 (5)	0.8450 (4)	0.0546 (12)
0.6642	0.9582	0.9043	0.065*
0.5613	1.0889	0.8835	0.065*
	0.4694 (6) 0.2871 (6) 0.1859 0.2304 0.3377 (8) 0.2134 0.4022 0.6256 (7) 0.5619 0.6661 (8) 0.6339 0.7563 (8) 0.7819 0.8084 (7) 0.8725 0.7646 (6) 0.8117 (7) 0.8924 0.8917 0.6244 (7) 0.6642 0.5613	0.4694(6) $0.7240(4)$ $0.2871(6)$ $0.7913(4)$ 0.1859 0.7293 0.2304 0.8359 $0.3377(8)$ $0.8864(4)$ 0.2134 0.9198 0.4022 0.8424 $0.6256(7)$ $1.2605(4)$ 0.5619 1.2350 $0.6661(8)$ $1.3874(4)$ 0.6339 1.4470 $0.7563(8)$ $1.4244(5)$ 0.7819 1.5103 $0.8084(7)$ $1.3342(5)$ 0.8725 1.3584 $0.7646(6)$ $1.2071(4)$ $0.8117(7)$ $1.1013(5)$ 0.8924 1.1359 0.8917 1.0401 $0.6244(7)$ $1.0334(5)$ 0.6642 0.9582 0.5613 1.0889	0.4694 (6)0.7240 (4)0.8012 (3)0.2871 (6)0.7913 (4)0.8353 (4)0.18590.72930.89420.23040.83590.76720.3377 (8)0.8864 (4)0.8842 (4)0.21340.91980.91440.40220.84240.94920.6256 (7)1.2605 (4)0.4855 (4)0.56191.23500.43970.6661 (8)1.3874 (4)0.4520 (5)0.63391.44700.38420.7563 (8)1.4244 (5)0.50310.8084 (7)1.3342 (5)0.6198 (5)0.87251.35840.66620.7646 (6)1.2071 (4)0.6483 (4)0.8117 (7)1.1013 (5)0.7541 (4)0.89241.13590.79020.89171.04010.72900.6244 (7)1.0334 (5)0.8450 (4)0.66420.95820.90430.56131.08890.8835

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu	0.0479 (3)	0.0350 (3)	0.0253 (2)	-0.0001 (2)	-0.0020 (2)	-0.01082 (19)
Br	0.0328 (2)	0.0541 (3)	0.0300 (2)	0.00276 (17)	-0.00239 (15)	-0.01773 (18)
Cl	0.0517 (7)	0.0459 (6)	0.0707 (8)	0.0054 (5)	-0.0143 (6)	-0.0138 (6)
011A	0.161 (13)	0.099 (11)	0.191 (11)	0.081 (10)	-0.070 (10)	-0.051 (9)
012A	0.097 (8)	0.071 (7)	0.085 (8)	-0.005 (6)	0.011 (6)	-0.013 (5)
013A	0.106 (8)	0.093 (6)	0.145 (10)	-0.012 (6)	-0.050(7)	-0.047 (7)
014A	0.080 (7)	0.125 (9)	0.080 (6)	0.007 (6)	0.004 (5)	-0.035 (5)
O11B	0.098 (8)	0.102 (11)	0.128 (9)	0.067 (8)	-0.054 (7)	-0.065 (8)
O12B	0.120 (10)	0.146 (11)	0.119 (10)	-0.020 (8)	0.044 (9)	0.000 (9)
O13B	0.066 (7)	0.050 (5)	0.109 (11)	0.007 (5)	-0.025 (7)	-0.037 (6)
O14B	0.146 (13)	0.105 (8)	0.104 (10)	-0.010 (9)	-0.058 (9)	-0.048 (8)
Ν	0.049 (2)	0.0437 (19)	0.0311 (17)	0.0068 (16)	-0.0029 (15)	-0.0148 (15)
N1A	0.047 (2)	0.0372 (17)	0.0296 (16)	0.0006 (15)	-0.0069 (14)	-0.0102 (14)
N1B	0.0389 (18)	0.0410 (18)	0.0323 (17)	-0.0025 (14)	-0.0032 (14)	-0.0143 (14)
C1A	0.049 (3)	0.051 (3)	0.044 (2)	0.007 (2)	-0.008(2)	-0.016 (2)
C2A	0.074 (4)	0.052 (3)	0.062 (3)	0.018 (3)	-0.007 (3)	-0.015 (3)
C3A	0.097 (4)	0.037 (3)	0.069 (3)	0.009 (3)	-0.009 (3)	-0.010 (2)
C4A	0.071 (3)	0.043 (3)	0.045 (3)	-0.006 (2)	0.001 (2)	-0.007 (2)
C5A	0.050 (2)	0.042 (2)	0.0287 (19)	-0.0002 (18)	-0.0094 (17)	-0.0101 (17)
C6A	0.044 (2)	0.046 (2)	0.041 (2)	-0.0035 (19)	-0.0038 (19)	-0.0031 (19)
C7A	0.074 (3)	0.052 (3)	0.042 (2)	0.002 (2)	0.012 (2)	-0.016 (2)
C1B	0.055 (3)	0.046 (2)	0.045 (2)	-0.002 (2)	-0.012 (2)	-0.016 (2)

C2B	0.059 (3)	0.044 (3)	0.063 (3)	-0.003 (2)	-0.004 (2)	-0.007 (2)
C3B	0.058 (3)	0.043 (3)	0.097 (4)	-0.011 (2)	0.006 (3)	-0.032 (3)
C4B	0.049 (3)	0.073 (3)	0.079 (4)	-0.015 (2)	-0.004(3)	-0.047 (3)
C5B	0.037 (2)	0.057 (3)	0.042 (2)	-0.0043 (19)	-0.0035 (18)	-0.026 (2)
C6B	0.045 (2)	0.083 (3)	0.045 (3)	0.012 (2)	-0.015 (2)	-0.033 (2)
C7B	0.060 (3)	0.074 (3)	0.032 (2)	0.011 (2)	-0.014 (2)	-0.021 (2)
Geometric para	meters (Å, °)					
Cu—N1A		2.000 (3)	C3A	-C4A	1.37	73 (7)
Cu—N1B		2.012 (3)	C3A	—H3AA	0.93	300
Cu—N		2.044 (3)	C4A	-C5A	1.38	35 (6)
Cu—Br		2.4542 (7)	C4A	—H4AA	0.93	300
Cu—Br ⁱ		2.8908 (8)	C5A	—С6А	1.49	94 (6)
Br—Cu ⁱ		2.8908 (8)	C6A	—С7А	1.52	28 (7)
Cl—O12B		1.326 (11)	C6A	—H6AA	0.97	700
Cl—O11A		1.361 (11)	C6A	—H6AB	0.97	700
Cl—O12A		1.388 (11)	C7A	—H7AA	0.97	700
Cl—O13A		1.397 (9)	C7A	—H7AB	0.97	700
Cl—O13B		1.424 (11)	C1B	C2B	1.36	66 (6)
Cl—O11B		1.424 (11)	C1B	H1BA	0.93	300
Cl—O14B		1.469 (10)	C2B	C3B	1.37	79 (8)
Cl—O14A		1.495 (9)	C2B	H2BA	0.93	300
N—C7B		1.488 (6)	C3B	B—C4B	1.37	75 (8)
N—C7A		1.496 (5)	C3B	H3BA	0.93	300
N—H0A		0.9100	C4B	B-C5B	1.38	34 (6)
N1A—C5A		1.349 (5)	C4B	H4BA	0.93	300
N1A—C1A		1.350 (5)	C5B	G-C6B	1.50	02 (6)
N1B—C1B		1.342 (5)	C6B	В—С7В	1.51	7 (6)
N1B—C5B		1.349 (5)	C6B	H6BB	0.97	700
C1A—C2A		1.361 (6)	C6B	H6BC	0.97	700
C1A—H1AA		0.9300	C7B	H7BB	0.97	700
C2A—C3A		1.374 (7)	C7B	H7BC	0.97	700
C2A—H2AA		0.9300				
N1A—Cu—N1B		159.15 (14)	C5A	—C4A—H4AA	120	.2
N1A—Cu—N		89.40 (13)	N1A	A—C5A—C4A	120	.4 (4)
N1B—Cu—N		85.66 (13)	N1A	а—C5A—C6A	117	.6 (4)
N1A—Cu—Br		92.56 (9)	C4A	-C5A-C6A	122	.0 (4)
N1B—Cu—Br		92.79 (9)	C5A	—С6А—С7А	111	.7 (4)
N—Cu—Br		177.86 (10)	C5A	—С6А—Н6АА	109	.3
N1A—Cu—Br ⁱ		106.74 (10)	C7A	—С6А—Н6АА	109	.3
N1B—Cu—Br ⁱ		93.79 (10)	C5A	—С6А—Н6АВ	109	.3
N—Cu—Br ⁱ		93.61 (10)	C7A	—С6А—Н6АВ	109	.3
Br—Cu—Br ⁱ		85.00 (2)	H6A	А—С6А—Н6АВ	107	.9
Cu—Br—Cu ⁱ		95.00 (2)	N—	C7A—C6A	112	.9 (3)
011A—Cl—013	A	113.7 (9)	N—	C7A—H7AA	109	.0
012A-Cl-013	A	111.2 (9)	C6A	—С7А—Н7АА	109	.0

O12B-Cl-O11B	115.9 (11)	N—C7A—H7AB	109.0
O13B—Cl—O11B	105.7 (9)	С6А—С7А—Н7АВ	109.0
O12B—Cl—O14B	110.1 (9)	Н7АА—С7А—Н7АВ	107.8
O13B-Cl-O14B	104.4 (8)	N1B—C1B—C2B	123.3 (4)
O11B-Cl-O14B	106.0 (9)	N1B—C1B—H1BA	118.4
O11AClO14A	108.1 (10)	C2B—C1B—H1BA	118.4
O12A—Cl—O14A	103.5 (7)	C1B—C2B—C3B	117.9 (5)
O13A—Cl—O14A	105.2 (6)	C1B—C2B—H2BA	121.1
C7B—N—C7A	112.0 (3)	C3B—C2B—H2BA	121.1
C7B—N—Cu	110.9 (3)	C4B—C3B—C2B	119.9 (5)
C7A—N—Cu	118.5 (3)	С4В—С3В—Н3ВА	120.0
C7B—N—H0A	104.7	С2В—С3В—НЗВА	120.0
C7A—N—H0A	104.7	C3B—C4B—C5B	119.3 (5)
Cu—N—H0A	104.7	C3B—C4B—H4BA	120.4
C5A—N1A—C1A	119.0 (4)	C5B—C4B—H4BA	120.4
C5A—N1A—Cu	121.3 (3)	N1B—C5B—C4B	120.9 (4)
C1A—N1A—Cu	119.8 (3)	N1BC5BC6B	115.5 (4)
C1B—N1B—C5B	118.7 (4)	C4B—C5B—C6B	123.6 (4)
C1B—N1B—Cu	124.8 (3)	C5B—C6B—C7B	113.2 (4)
C5B—N1B—Cu	116.4 (3)	C5B—C6B—H6BB	108.9
N1A—C1A—C2A	122.7 (4)	C7B—C6B—H6BB	108.9
N1A—C1A—H1AA	118.7	C5B—C6B—H6BC	108.9
C2A—C1A—H1AA	118.7	С7В—С6В—Н6ВС	108.9
C1A—C2A—C3A	118.5 (5)	H6BB—C6B—H6BC	107.8
C1A—C2A—H2AA	120.7	NC7BC6B	113.2 (3)
СЗА—С2А—Н2АА	120.7	N—C7B—H7BB	108.9
C4A—C3A—C2A	119.7 (5)	C6B—C7B—H7BB	108.9
С4А—С3А—НЗАА	120.1	N—C7B—H7BC	108.9
С2А—С3А—НЗАА	120.1	С6В—С7В—Н7ВС	108.9
C3A—C4A—C5A	119.6 (4)	H7BB—C7B—H7BC	107.7
СЗА—С4А—Н4АА	120.2		
N1A—Cu—Br—Cu ⁱ	106.59 (10)	N1A—C1A—C2A—C3A	1.8 (8)
N1B—Cu—Br—Cu ⁱ	-93.56 (10)	C1A—C2A—C3A—C4A	-2.8 (9)
N—Cu—Br—Cu ⁱ	-50 (3)	C2A—C3A—C4A—C5A	0.6 (8)
Br ⁱ —Cu—Br—Cu ⁱ	0.0	C1A—N1A—C5A—C4A	-3.7 (6)
N1A—Cu—N—C7B	97.3 (3)	Cu—N1A—C5A—C4A	176.0 (3)
N1B—Cu—N—C7B	-62.4 (3)	C1A—N1A—C5A—C6A	174.5 (4)
Br—Cu—N—C7B	-106 (3)	Cu—N1A—C5A—C6A	-5.8 (5)
Br ⁱ —Cu—N—C7B	-155.9 (3)	C3A—C4A—C5A—N1A	2.7 (7)
N1A—Cu—N—C7A	-34.3 (3)	C3A—C4A—C5A—C6A	-175.4 (5)
N1B—Cu—N—C7A	166.0 (3)	N1A—C5A—C6A—C7A	-58.6 (5)
Br—Cu—N—C7A	122 (3)	C4A—C5A—C6A—C7A	119.6 (5)
Br^{i} Cu N $C7\Delta$	72,5(3)	C7B—N—C7A—C6A	-142.0(4)
N1B-Cu-N1A-C5A	121 2 (4)	Cu = N = C7A = C6A	-10.9(5)
$N = C_1 = N_1 A = C_5 A$	45 1 (3)	C_{5A} C_{6A} C_{7A} N	65 9 (5)
$Br_Cu_N1A_C5A$	-134 1 (3)	C5B—N1B—C1B—C2B	0.4(7)
	-48 5 (3)	$C_{\rm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	177 7 (A)
DI —CU—INIA—CJA	чо. <i>э</i> (<i>э</i>)	Cu MD—CID—C2D	1///(4)

N1B—Cu—N1A—C1A	-59.1 (5)	N1B-C1B-C2B-C3B	-1.5 (7)
N—Cu—N1A—C1A	-135.2 (3)	C1B—C2B—C3B—C4B	2.1 (8)
Br—Cu—N1A—C1A	45.6 (3)	C2B—C3B—C4B—C5B	-1.7 (8)
Br ⁱ —Cu—N1A—C1A	131.2 (3)	C1B—N1B—C5B—C4B	0.1 (6)
N1A—Cu—N1B—C1B	157.2 (4)	Cu—N1B—C5B—C4B	-177.4 (3)
N—Cu—N1B—C1B	-126.0 (3)	C1B—N1B—C5B—C6B	179.6 (4)
Br—Cu—N1B—C1B	52.5 (3)	Cu—N1B—C5B—C6B	2.1 (4)
Br ⁱ —Cu—N1B—C1B	-32.6 (3)	C3B—C4B—C5B—N1B	0.6 (7)
N1A—Cu—N1B—C5B	-25.4 (5)	C3B—C4B—C5B—C6B	-178.9 (4)
N—Cu—N1B—C5B	51.3 (3)	N1B-C5B-C6B-C7B	-66.2 (5)
Br—Cu—N1B—C5B	-130.2 (3)	C4B—C5B—C6B—C7B	113.3 (5)
Br ⁱ —Cu—N1B—C5B	144.7 (3)	C7A—N—C7B—C6B	156.6 (4)
C5A—N1A—C1A—C2A	1.4 (7)	Cu—N—C7B—C6B	21.7 (5)
Cu—N1A—C1A—C2A	-178.3 (4)	C5B—C6B—C7B—N	49.4 (5)
Symmetry codes: (i) $-x+1, -y+2, -z+1$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N—H0A····O14A	0.91	2.34	3.205 (12)	159
N—H0A····O13B	0.91	2.44	3.089 (18)	129
C6A—H6AB···Br ⁱ	0.97	2.70	3.588 (4)	153
C6B—H6BC…Br ⁱⁱ	0.97	2.89	3.706 (4)	142
C6B—H6BB····O13B ⁱⁱⁱ	0.97	2.57	3.487 (18)	158
C2A—H2AA···O11A ^{iv}	0.93	2.52	3.162 (14)	126
C7A—H7AA····O12A ^v	0.97	2.51	3.322 (16)	141
С7А—Н7АА…О13В	0.97	2.49	3.179 (15)	128
C3A—H3AA···O13A ^{vi}	0.93	2.54	3.142 (12)	122

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+1; (ii) -*x*+2, -*y*+2, -*z*+1; (iii) *x*+1, *y*, *z*; (iv) *x*+1, *y*-1, *z*; (v) -*x*, -*y*+2, -*z*+2; (vi) *x*, *y*-1, *z*.

Fig. 1

Fig. 2

